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Abstract—The Nusselt solution for laminar film condensation on a vertical plate with upward vapor flow is

reviewed, with comments on the nature of the condensate flow. The same laminar film condensation problem

1s considered for the case of upward vapor flow in the inside of a vertical tube, in which case the decrease in the

steam flow rate due to the condensation produces a reduction in the shear stress which supports the

condensate layer. A numerical solution of the problem is then required and results are given for specific cases

to illustrate the method of the calculation and to indicate the nature of the condensation process in the
vertical tube. These cases involve both upward and downward flow of the condensate.

NOMENCLATURE
¢ friction coefficient, (2t,)/{pu?);
D, tube inside diameter;
F, friction factor augmentation factor;
g, gravitational acceleration ;
1 dP .
G, (1 + ~—-——~—>, equation (2);
prg dz
k, thermal conductivity;
n, mass rate of flow;
m’,  mass flux;
N, dimensionless quantity, N,, equation (6), N ,,
equation (3a);
P, pressure;
T, temperature ;
u velocity in the z direction, i = u/(gv)**;
¥, distance normal to the wall, ¥ = y/(v?/g)*"3;

distance along the plate or the tube normal
from the bottom edge.
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Greek symbols

i, dynamic viscosity;
v, kinematic viscosity ;
T, shear;
d, liquid film thickness
A latent heat of vaporization;
T, liquid mass flow rate, per unit film width;
o density.
Subscripts
L, liquid ;
v, vapor;
4, edge of liquid film;
c, condensation.
Superscript

5 dimensionless quantity in terms of (v2/g)*?
as a distance measure of (gv)'? as a velocity
measure.

L. INTRODUCTION

THiS report is a consideration of the problem of the
condensation of a pure saturated vapor flowing up-

ward in a vertical tube, for constant liquid and vapor
properties, under conditions for which the liquid flow
remains laminar. This problem is associated with that
of Nusselt [1] who considered the problem of conden-
sation on a plate of finite height with a vapor velocity
past the plate surface; in this problem, depending on
the plate height, the liquid can flow either upward or
downward on the plate. The results of the Nusselt
solution are given by Jakob [2] and by Kutateladze
[3]. This solution is not applicable to the pipe situation
because in the pipe the vapor velocity diminishes as the
condensation proceeds.

Rohsenow (4) has presented a method for the
calculation of the condensation in a tube which
assumes co-current annular flow of the vapor and of
the liquid. On this basis the pressure drop is calculated
from the correlation of Lockhart and Martinelli, so
that the pressure gradient is found in terms of the local
quality. For the heat transfer there is used a correlation
specification of the heat transfer coefficient in terms of
the two phase flow parameter, X, ; involving the
quality and the properties. Then, by assuming incre-
ments in the quality, the heat transfer out of the pipe
wall in the increment is specified and, with the heat
transfer coefficient determined, the length increment is
evaluated. This solution then gives the quality and the
pressure as function of the distance from the location
at which condensation begins.

The solution given here is more closely associated
with the solution of Nusselt, in that a laminar liquid
flow of the Nusselt type is specified. Thus, there is in the
pipe an annular flow. This is specified in terms of a
friction coefficient at the interface, the coefficient
depending on the gas flow. In the vertical pipe, asin the
Nusselt solution for the vertical plate, there is a
restricted regime for totally upward condensate flow,
though it appears that there is an undefined set of
circumstances for which the condensate can flow both
upward and downward. In this latter case the pos-
tulates of the Rohsenow method based on co-current
flow of the liquid and the vapor would probably be
unsuitable.
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In respect to the present problem, and for an
orientation to it, some further discussion of the Nusselt
problem is included.

2. THE MOTION OF THE LIQUID

The motion of the liquid is specified by neglecting
the acceleration terms in the momentum equations,
and assuming the liquid layer to be so thin relative to
the radius of the pipe that the curvature of the layer can
be neglected. Then for gravity in the downward
direction

d*u 4P
0=y FTC L9, (1
e d2u_(l B cﬁif)_G 2
pgdyt ' pgdz )

Integration yields for the velocity distributionin 0 < y
< 0, where 9 is the layer thickness

Y
'lfl;,u = (L _ (syj + iz y (3)
g .2 /
and from this velocity distribution the liquid Reynolds
number is obtained as

) , 53 52
( ud} = G() +i,(,,., (4)
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Non-dimensional variables are specified as

FN13 13
d=20 (%) y=y <%> U= uf{vg)">.
Vi,

/ VL

With these variables the velocity distribution specified
by equation (3) becomes

o2 13
Voo T s

= G('v~ - 5,\7) + r”(%) ¥
.2 ) Prd Wi

(3a)

and in particular, the liquid velocity at the edge of the
condensate layer is

52 13
fy= — LA (%) 5.
2 oLg \Vi
The non-dimensional group that is the coefficient of &
in the last term is specified as N, ; it is a function of the
shear, 7,, at the liquid—vapor interface.
The Reynolds number, as given by equation (4),
becomes, for G = |

1 r 3 &
e udy = = Ny —
YL Jo Hy 2 3

(3b)

(4a)

A local mass balance specifies the change in the
Reynolds number in terms of the condensation flux s/
(kgs 'm™?)

diljp)

L = M.
He d:

If the convective terms in the energy equation are

neglected, that is, if the contribution of liquid subcool-

ing to the energy flux in the layer is ignored, then the
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temperature distribution in the laminar condensate
layer is linear, and the condensation flux is specified by
the balance

o, kT =Ty dlg)  k(T,-T,)
A = e L e = e (§)
¢ o d- Jpiv 0
or
d(ry N T, — T,
w(-'_’i) =" where N, = LLLL‘AL) (o' ve ).
dz 0 A

(6)

The liquid Reynolds number, I'/y, , is a function of &
and the integration of equation (6) specifies & as a
function of z and gives the solution to the problem.
Here (T, — T,) implicitly is a constant, but if this
quantity is variable in Z there is no difficulty in the
integration of equation (5).

3. THE VAPOR FLOW AND THE FRICTION
COEFFICIENT

No detailed consideration is made of the velocity
distribution in the vapor, but rather a friction coef-
ficient is first evaluated as for fully developed pipe flow
of the vapor and then this coefficient is modified
according to the specifications of Henstock and Han-
ratty [5], whereby there is specified an interfacial
shear, in terms of a correlation of data for fully
developed annular gas-liquid flow. This modification
accounts for the increased friction that is due to the
irregularity of the surface of the liquid layer. Fault may
be found in this when it is applied to the region near the
entrance of a pipe, where the friction coefficient varies
substantially, but there is no similar specification for
two phase annular flow and the method thus adopted
underestimates the interfacial friction, 7, when the
distance from the inlet, z/D, is small.

The single phase friction coefficient is evaluated in
terms of a vapor Reynolds number, Re,, as

: 8
(f = ...— for Re, < 2000 (7)
2 Re,
and
- 0.04
LA S Re, > 4000 (8)

5 (Rev)O.ZS

with the interpolation

s R 0.33
¢ Re) 2000 < Re, < 4000 (9)
27 3050

The specification of equation (9) is not fundamental
but is a device to eliminate the abrupt change in the
friction coefficient that occurs at Re, = 2000 if a
transition to equation (8) is used at that Reynolds
number. With an abrupt change in wall shear difficul-
ties were experienced in the numerical solution of the
problem of condensation in a pipe.

The Reynolds number of the vapor to be used in
equation (7)—(9) should be, to be consistent with the
specifications of ref. [5], [4 m,/(nDp,)]. Instead, there
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is used the Reynolds number 4 m,/(nD'u,), where D' =
D — 26, the diameter of the gas flow region. Since
generally § « D, as it must be if the assumptions of
section 2 are to be sustained, there is little difference in
the choice of the Reynolds number. Actually the choice
that was made is probably more appropriate, since in
some instances the increase in the friction coefficient as
specified by ref. [5] was not used.

For turbulent flow of the gas, ref. [5] specifies that
the friction factor as given by equation (8) and (9) is to
be multiplied by a quantity which will then produce
the true friction factor (¢;/2)g

<ﬁ> = ST + 1400 F). (10)
.72

2
For the laminar liquid flow assumed here, the
quantity F is

212(| 0/ |)' 2
F= Re??

(vL/vv) (pL/pv)l /2' (11)

For low vapor velocities, and particularly for down-
ward liquid (countercurrent) flow, the factor F is to be
modified further according to

oo l-on )] )

(12)

No specification such as this is available for laminar
flow in the vapor region, thus for Re, < 2000 the factor
F is taken to be zero.

The friction coefficient as given by equation (10)
applies, however, only to the case of zero velocity
normal to the interface. There is no specification for
the friction coefficient for the case of the substantial
normal velocity due to condensation. Because of this
there is adopted for the specification of the shear the
sum of the above friction shear based on no normal
velocity at the interface and that due to condensation
at the flux m} (kgm~?s!). This is

(13)

In considering this specification, note should be
taken of the fact that, for the condensation problems
considered, the liquid velocity at the interface, equa-
tion (3b), is less than u, and it may be negative. Thus,
equation (13) defines a ‘total’ friction coefficient that
perhaps approximates the true value at least as m, — 0
and as m] — oc. One further modification was made in
the shear stress, substituting for u? in equation (13) the
term (u, — u.;)%. Using the non-dimensional quan-
tities there is then obtained

T, = (c/2)p UL + MU, — uypy).

pv — - 2 Nl ol 7
N,y = (¢f2)g — 0, — tLs)” + — (i, — 1) (14)
oL o

This corresponds to equation (13) for &, » #; ;and
appears to be a plausible modification for use in the
case in which i ; differs considerably from #,.

With a friction coefficient specified, attention can
now be given to the factor G = [1 + (dP/dz)/(p,.¢)]
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that occurs in equations (1)~(4). If the body force on
the vapor is neglected (p, « p.) then a momentum
balance on the vapor flow, in which the momentum
rate is taken without a correction factor, as p,u2, yields
for the pressure drop

1 dP 4N, vip, d [ 4m
L 2 Wh <~_'" > (15)
D'ug

Since m, decreases with distance due to the conden-
sation, the second term on the RHS of this equation
tends to compensate the effect of the first term and the
group [dP/dz)/p; g)] is often not much different from
zero. The presently indicated results for the tube
neglect this term, except in the one case noted specifi-
cally in section 6. Thus, G = 1 in most cases though it is
not too burdensome to include this term in the
program whereby the evaluation of equation (6) is
accomplished.

prg dz D' viprd:z

4. THE NUSSELT SOLUTION

Nusselt [1] indicated a solution for equation (6) for
a constant value of N, and G = 1. The system
approximating this solution can be considered as a
vertical plate of infinite width and height. Vapor flows
upward along the plate at constant pressure, and the
friction coefficient is taken to be independent of length
despite the fact that the development of a vapor
boundary layer on the exterior of the condensate layer
will produce a variation of the friction coefficient in the
direction of vapor flow even if the second term of
equation (13)is neglected. For this situation the liquid
Reynolds number is, as given by equation (4a)

r 5 8
PRy
or,
r L/d N 1/8Y
i) ) e
and equation (6) becomes
@__w,
dz (N, - §)8*
or,
AN, 1 (6a)
() (-w)G)
N# N, J\N,
This solution terminates when N, = &, where

d(I'/p,)/dé = 0.

Figure 1 is a sketch of equation (4a) for various
values of N,. Because of the form of equation (4b), the
curve for N, = 1 also represents ['/u; N* = f(5/N,).
For N, = 1 an expansion of the region for §/N, < 1.5
is shown by an inset on Fig. 1.

For a liquid layer beginning at the bottom of the
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Fi. 1. Liquid Reynolds numbers as a function of non-
dimensional film thickness for various values of N,.

plate, integration of equation (6), for & = 3, at the
bottom of the plate, gives

TN = 8 — (5 — S = 4N, =

[T -))

If the condensate layer thickness is zero at the
bottom of the plate, then upward flow of the conden-
sate layer occurs up to the point at which the limit of
8/N, = 1 is attained. There the Reynolds number of
the liquid is given by I'/(i, N3) = 1/6, and the height at
which this occurs is given by equation (16) as
4(Nz)/N% = 1/3. This specifies the maximum height
of a plate for upward film flow when the layer thickness
at the lower edge is zero.

Completely positive Reynolds numbers can
theoretically occur also if at the bottom of the plate the
film thickness is such that §/N, is between 1 and 3/2, so
that the Reynolds number there is such as to make 0 <
I'/(u N3) < 1/6. This requires a supply of liquid at the
bottom of the plate, a situation considered to be
unrealistic in the present context. With a zero Rey-
nolds number, §/N = 3/2, at the bottom, half of the
flow in the layer is upward and half is downward and
this situation might be considered as attainable if there
exists an appropriate flow reversal device at the bottom
of the plate. Then the Reynolds number increases with
plate height, until there is attained the limiting value of
/(4 N3) of 1/6, when 8/N, = 1. Equation (16)
indicates that this height is given by 4(N ,2)/N% = 0.9.
This is the maximum plate height for film flow of the
condensate when a zero Reynolds number is realized
at the bottom by the special means of a flow reversal
device at the bottom of the plate.

If 5/N, > 3/2 the Reynolds numbers at the bottom
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of the plate are negative, and the net flow is downward.
For §/N, = 2 the velocity in the layer is positive
throughout it, with a zero velocity at the liquid vapor
interface. For §/N, > 2 the velocity at the interface
becomes increasingly more negative. If the Reynolds
number is zero at the top of the plate, 3/N, must be
equal to 3/2 there, but, depending upon the plate
height and the vapor flow conditions, there can be
positive Reynolds numbers at the top of the plate, up to
the limit that is specified by /N, = 1, for which the
Reynolds number is given by T/(i;N3) = 1/6. To
illustrate one specific case, the one with a Reynolds
number of zero at the top, and all Reynolds numbers
negative and with 8/N, and a Reynolds number given
by T/(u.N3) = — 1/3 at the bottom, the height of the
plate is specified by equation (16) as 4(N,7)/N% = 4.8.
The prior specifications, made for quantity N, a
constant, can be modified to partly account for the
contribution of the condensation to the shear as that is
contained in equation (14). This involves neglecting the
interface velocity, i, 5 in that equation and considering
it as
N2=N20+N:§V- (17)

The Reynolds number, in these terms is

r N, \§* &°
—_ = Nzo‘*’#—uV - (18)
I 6 /2 3
and equation (6a) can be written as
dé _ N,
4 N, -
dz [Nzoé_ + ;uv - 52J5_

with the solution, for § = §, at z = 0, the bottom of the
plate

SOl GG
36 /L S 55 5

] 4Nz

“‘(E::Hz‘sz

and with 8, = 0 at z = O the solution is

%NZ 5 R NG -5 =4ANE  (0)

This is cited here because of later use. It cannot be
considered in a general way because 4N Z. now
depends on both N,, and on N,u, so that the
appraisal of the flow direction as made before for N,
a constant is not possible in a concise way.

5. UPWARD VAPOR FLOW IN A TUBE

With the assumption of § « D, so that the curvature
of the liquid layer can be neglected as it was in section
2, the development of the liquid layer is specified by
equation (6)

d(F/u,)

N ]
dz & (©)



Laminar film condensation in a tube with upward vapor flow

In considering this equation, there can be considered
the form
d(T/pm) 45 _ N,

ds dz 3§

(6a)

where

A/ _ SdN,\ .
5 ‘( + )

It is apparent from equation (6a) that when d(T'/u, )/dd
= 0 this solution terminates with dé/d7 —» .

Quantity N, is now that given by equation (14}, with
{c¢/2); evaluated as specified by equation (10). If § is
taken to be zero initially, § increases with z, the liquid
Reynolds number is positive, and N, decreases with Z
because of the decrease in the vapor velocity. Thus, in
terms of the picture of Fig. 1, the curve of the relation
['/u, = f{8) originates at zero, passes through the
curves for successively lower values of N,, and ter-
minates when d(I'/y; )/d§ = 0.

If 8, is taken to be greater than the initial value of N,
then & decreases as 7 increases. Quantity N, decreases
as 7 increases because of the decrease in the vapor
velocity, and the relation T/y; = f(J) passes through
the curves associated with successively lower values of
N,. It terminates at d(T'/u, )/d& = 0.

This kind of behavior is shown on Fig. 1 by a dashed
line, which is the last part of the solution for a specific
case, case PC of section 7, which begins with a negative
Reynolds number that is below the lower limit of the
scale of Fig. 1. The successively lower values of N ,, due
to the decreasing friction because of the decreasing
value flow, are apparent. The termination, at
d(T'/u, )/dd = 0 cannot be discerned because of the
scale of Fig. 1.

The above behavior is subject to the availability of
sufficient vapor. The mass balance between the vapor
and the liquid flows is

Mo — m, = tD(I’ — Ty)

or, in terms of Reynolds numbers

4 m, 4 m _4;1L<F FQ>
nD u TV

When ni, = 0 the solution terminates; this may occur
before d(I'/uy )/dd becomes equal to zero.

A limit on the inlet gas Reynolds number for a given
tube size and fluid properties can be established for the
case of complete condensation, as would occur in an
infinitely long tube. Regardless of the nature of such
condensation, all of the liquid must then leave the
bottom of the tube. If that condensation is completely
film-wise, this requires that all of the liquid Reynolds
numbers along the tube height be negative, terminat-
ing with 8/N = 3/2 and d{T'/z)/dd = Osimultaneously
at the point where all of the vapor is condensed, so that
also, N, would be zero at that point. This has not been
proven and this condition may not always exist. If it
does not, the condensation must be completed by

MY 25:9 - C
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means other than exclusively film-wise, but in any case
all of the liquid must leave at the bottom of the tube.

If the condition §/N, = 2 is adopted for the bottom
of the tube with complete condensation, then for
this value of §/N, the lignid Reynolds number is
{— 2 N2/3). A choice of a vapor Reynolds number,
for a given tube diameter and given properties, specifies
N, and thus the liquid Reynolds number. But the mass
flow of liquid so specified by the liquid Reynolds
number must equal the mass flow of vapor associated
with the chosen gas Reynolds number, as from equa-
tion (21}

A trial and error solution made in an approximate
way by neglecting the second term in equation (14),
establishes the gas Reynolds number that meets these
conditions. It is the maximum gas Reynolds number
for complete condensation, Lower inlet gas Reynolds
numbers than this one will produce lower values of N,
at the tube inlet, and liquid films leaving the tube with
larger values of §/N,. This maximum Reynolds num-
ber is cited in some of the evaluations that follow.

6. THE CALCULATION AND RESULTS

Given the initial value of § and the initial vapor flow,
which specifies the initial value of [4 m,/(nDy,)], the
solution of equation (6) gives & as a function of . This
solution is made in the following way:

{1) The initial value of J,, together with the initial
value of m,,, enables the calculation of an initial value
of N, from equation (14) and the associated definitions
of the friction factor.

{2) A suitably small increment in § is selected, to
define the next value of &, which is J,.

{3) This defines an approximate I'/y; by the use of
the initial value of N,. The mass balance gives a value
of the gas Reynolds number, (4 m, /(nDg,)] and then a
new value of N, is calculated. Linear interpolation is
used to find, from the initial and the new values of N ,, a
more suitable value of N,, which is then used to find
another value of I'/u, and the process is repeated until
the values of I'/y; are within 0.3%; of each other. The
liquid Reynolds number is then taken as the value
given at the end of this iteration.

{4) The increment in Z is calculated from

{8, + & ’r)
N,AZ == (—*;**)A(JTL .

ra

(5) With (I'/u), 8, N, now specified, another incre-
ment is taken in §, as in step 2, and the process is
repeated. The calculation is carried out either to the
point at which d(I'/u )/dZ = O or to the point at which
all of the vapor has been condensed.

If &, = 0, gravity is neglected for the first step, so that
the 5> term does not appear in the denominator of
equation (6a) and then, with N, taken from equation
(14), with F taken to be zero in equation (10), equation
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607. P, properties at x~260°C, Pressure 61.2 atm

0.0581; D = 127cm; D
1620

0157: D=197cm: D

T,- T, =39°C; N,

Table 1. Prediction summary. Cases A, properties at 100°C, Pressure 1.0 atm; (T, — T,) = 55°C; N,

Final conditions

Initial conditions

(13)

(12)
1400F

(10) {11

9

—

(6)

2) 3) ) (5)
4 m,

(1

Column

o
>, cond.

z

r
Hy

€
<12

D y,

Case

6.6 x 10*
94

0.162/8.26
0

82
31

0.13
1.74
211

15.4

9340
78

236
6.5

4830
1290
564
289

10.6
2.20

0 20 185.5
0 0.123 13.5
—13.1

—-174
—209

25600
1890

0
0

70
85

1050
1279

1.8
0.67
0.01
1.1
~ 0.04
~ 0.04

1.42
1.00
0.58
1.29
0.02
0.01

2.6
2.6

457

13.8

0.147

1890
1890

98

ol

24

1471

39
7850
39
23

1890
7865
7865
7865
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35 2x1073 0.3
99.98

18354
18875

316

0.08

0
—352

0
11.08
11.69

0.121/0.038

11.3

(0.80)
(22)

PB

/

99.99 1.95/0

11.7

2.6

PC

(6a) can be integrated analytically. Thus, o is de-
termined as a function of Z. A very small value of o is
chosen. Then a new value of N, is calculated and these
values serve for the entrance to step 2. as above.

Calculations were carried out in this way for two
different situations as defined at the top of Tablc 1. One
was for water at atmospheric pressure, with properties
of both liquid and vapor evaluated for saturation
conditions. The temperature difference between the
vapor and the wall was taken as 55°C. Since the liquid
temperature is therefore lower than the saturation
temperature, the liquid property evaluation is incon-
sistent, but the situation is tolerable since the results
are merely an example. As noted before, if the liquid
properties are considered to be invariable with tem-
perature, then the distances predicted for the chosen
temperature difference apply for any other tempera-
ture difference if the distance is taken to be inversely
proportional to the temperature difference. All of
the cases for atmospheric pressure are designated by
letter A.

The second set of cases, designated by letter P,
involve water at a pressurc of 900 psia, with a tube
diameter of 1.97 cm, slightly greater than that used in
the A cases. In the P cases the vapor properties were
taken at saturation conditions and the liquid proper-
ties at a film temperature corresponding to the chosen
difference of 39°C between the vapor and the wall
temperature. The P cases are related to a specification
of conditions at entrance to the steam generator of the
TMI system at a particular time in the TMI event. This
is the reason for the choice of the conditions for the P
cases.

The entries of Table | define the cases by two letters,
the first as indicated above and the second which
merely defines the particular cases and has no other
significance. The initial conditions as assumed for a
particular case are specified in Columns 1 and 2 of the
table. The assumed value of 3, Column 1. is zero for
some cases and finite for others. The assumed initial
value of the vapor Reynolds number based on tube
diameter, Column 2, reflects as assumption of an initial
steam rate, m,, kg s~ !. These two assumptions, to-
gether with a definition of the friction coefficient, specify
the initial value of N, via equation (14), as given in
Column 6. This specification of the friction coefficient
involves the quantity, F,equation (10). As noted in that
connection F was taken to be zero if the vapor
Reynolds number was less than 2000. For a number of
cases the vapor Reynolds number is less than this
initially, and this fact is noted by a zero value for F in
Column 13. In one other case, PB, it was arbitrarily
taken to be zero and this is noted in Column 13. For
cases AA, PA and PC, Column [ 3 shows the initial and
final values of the quantity 1400F.

With &, and N, specified, the liquid Reynolds
number is specified as in Column 3; negative values
indicate that I', the liquid flow rate per unit width, is
negative. Columns 4 and 5 are not fundamental, and
are associated with certain approximate predictions
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made for the Nusselt solution of Section 4, done to
provide some orientation for the basic results. Entries
appear only for the cases in which such a presentation
is made. Column 4 gives N ,,, the value associated with
equation (19) calculated from the vapor flow condition
assuming that u,; is zero. Column 5 gives N,
associated with the contribution of the condensation
to the shear stress, neglecting the effect thereon of 4, .

The remaining columns of the Table refer to the
final conditions of the calculation. All terminated for
d(T'/uy)/dé = 0, though for same of them this termi-
nation was very close to the other termination point
that would have been executed upon complete conden-
sation of the available steam. Column 7 gives the final
value of §, Column 8 the final vapor Reynolds number,
Column 9 the final value of the liquid Reynolds
number, and Column 10 the final value of z. Column 11
gives z/D, the number of tube diameters from the inlet
at which the final 7 occurs. Column 12 gives the
percentage of the inlet steam flow that is condensed.

The values of § and of ['/y; that were calculated
between the initial and final points are presented as
functions of z on figures.

7. RESULTS FOR STEAM CONDENSATION AT
ATMOSPHERIC PRESSURE

For atmospheric conditions, it was noted previously
that an approximation could be made for the inlet
vapor Reynolds number that would result in complete
condensation, with all of the condensate running out of
the bottom of the tube. For the conditions of the A
cases this Reynolds number is 4200. Table 1 indicates
case AA for an initial vapor Reynolds number of
25600, so much higher than 4200 that an initial liquid
layer thickness of zero is the only reasonable assump-
tion. This calculation terminates with d(I'/u, )/dd = 0
at z = 9340 (z/D = 154), with 81.6%; of the vapor
condensed and a positive liquid Reynolds number of
256. If the tube is only 15.4 diameters long for the 55°C
temperature difference or in inverse proportion to the
temperature difference for other temperature differ-
ences, this is the outlet condition at the top of the tube.
If the tube is longer than this, the condensation will
continue, but with a different flow regime than the
annular flow that is assumed in the model. Even at
termination /D is only 10.6/620; thus the liquid
volume fraction is relatively small. One hypothesis, not
yet examined, would be a continuation of the annular
flow at the limiting value of 4 with entrainment of the
excess condensation in the vapor stream.

Figure 2 indicates the variation of § with £ for this
case in terms of § as a function of 4 N ;Z. As a point of
reference, the Nusselt solution as given by equation
(20) is shown as a dashed line for the initial values of
N,o and N4, as they are given in Table 1. The more
rapid attainment of the terminal condition in the pipe
flow case, due to the decrease in the vapor velocity, is
evident clearly. Figure 2, on another curve, shows the
variation of the liquid Reynolds number, I'/y;, for the
solution for the pipe. There is shown no comparison of
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F1G. 2. The variation of § and Liquid Reynolds number along
the height of a vertical tube. Cases AA, AB, and PA are
indicated, with ordinate and abscissa scales as specified for
them. The solid curve for § is the computed result ; the dashed
curve is an approximation for the condensation on a vertical
plate with constant vapor velocity at the initial value thereof.
Curves R are the liquid Reynolds number, I'/y; .

this to the Reynolds number associated with the
Nusselt solution.

A case like that of Case AA was calculated, including
the value of G that is defined by equations (3) and (15).
The effect on 7 for the termination point, of d(I'/u)/dé=
0, was very small. This does not support, of course, the
use of G = 1 in all of the cases given in Table 1, and in
the future the value of G should probably be included
at the expense of additional complication in the part 3
of the calculation as outlined before.

Another Case, AB, is presented for an initial vapor
Reynolds number of 1890. This is far less than 4200
and downward liquid flow is indicated. Nevertheless, if
dis taken to be zero at the inlet, the terminal condition
is indicated to be at z = 70.7, z/D = 0.13, with 31%, of
the vapor condensed. If the tube was indeed only 0.13
diameters high, this situation could in principle be
attained. Figure 2 shows & as a function of 42N with
different scales being used because of the small values
that are involved in this case. A dashed line shows the
solution from equation (20). Despite the very short
length there is considerable condensation and the
value of & departs considerably from this Nusselt
solution even in the short distance that is involved.

For this initial Reynolds number of 1890, three cases
are shown for arbitrary but different values of §,, Cases
AC, AD, and AE, involving successively lower values of
the negative liquid Reynolds number at the tube inlet,
and for these cases the condensation ranges from 70 to
98% and for the latter only 2.42 tube diameters of
height are required. The 9% is so close to the 100%
level that any tube of length greater than about 2.5
diameters will condense all of the stem input that was
specified for these cases. Figure 3 shows by points the
relation of & to Z, given there as (6/3,) as a function of
(4(N,2)/6%). There is little distinction between the
results except for the termination point, indicated by
the last, underlined, symbol for each case. For a
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F1G. 3. The variation of § with height, Cases AC, AD, and AE.
The points are derived from the computed results. The curve
approximates the flat plate result for Case AD.

comparison, equation (19), the Nusselt solution for the
condition of Case AD, is shown by a curve on the
figure. The variation of the Reynolds number with
height is shown on Fig. 5 by curves for Cases AD and
AE, and the prediction for Case AD of the Reynolds
number as given by equation (18)is shown by a dashed
curve on the figure. This figure also contains the curve,
0, representing the Nusselt solution for a vertical plate
for the case of stationary vapor.

8. RESULTS FOR STEAM CONDENSATION AT 900 psia

As noted in section 5, complete condensation,
provided that the tube was high enough, with down-
ward flow of the condensate, would be expected for gas
Reynolds numbers up to about 50 000 for the 1.29 cm
diameter tube under consideration for the high press-
ure condition, for which the P cases defined in
Table 1 were calulated. All of those are for an initial
vapor Reynolds number of 7865, chosen for the specific
problem of the TMI stream generating unit. Thus
downward condensate flow is expected and Cases PB
and PC deal with such a situation. As a matter of
interest, however, a calculation, Case PA, was made for
this initial vapor Reynolds number and an initial liquid
layer thickness of zero, so that the liquid flows upward
in the tube.
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F1G. 4. The variation of § with height, Cases PB and PC. The

points are derived from the computed results. The curves are

approximation for the vertical plate case, qualified as in
section 7.
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F1G. 5. The variation of liquid Reynolds number with height.
The solid curves show the computed results for Cases AD,
AE, and PB. All Reynolds numbers are negative except for the
terminal values for Case AD, barely discernible as an almost
vertical line near the ordinate of 0.3. These final Reynolds
numbers are positive. The dashed curves for Cases AD and
PB are the Reynolds numbers for the plate predictions that
are shown on Figs. 3 and 4.

For Case PA, Table 1 shows a termination, with
d(I'/u.)/dd = 0,at 7 = 3.5,corresponding to a distance
ofonly 2 x 102 diameters from the inlet. Only 0.3%
of the stream flow is condensed before the liquid layer
becomes thick enough so that the upward condensate
flow can no longer be maintained. The dependence of
& on Zis shown on Fig. 2 by a solid curve. The dashed,
comparison curve from equation (20) is very close to
the computed solution because very little of the vapor
is condensed. A solid curve, R, on Fig. 2 shows the
variation of the Reynolds number.

Table | indicates two cases, PB and PC, for different
but similar values of §,. In case PB, the factor for
friction augmentation, F, was arbitrarily taken to be
equal to zero, while it was used as specified in section 3
for Case PC. It is the difference in N, associated with
this choice that causes the initial Reynolds number for
the liquid to be the same for these two cases. The final
values that are indicated in Table 1 show that for the
chosen initial conditions the effect of the factor F is not
very important. Both of these cases show essentially
complete condensation, though the termination was at
d(I'/u)/dd = 0. {Case PC is the one for which the
latter part of the relationship between I'/y and d is
shown by a dashed line on Fig. 1.) The liquid Reynolds
number at the termination was positive but only very
slightly greater than zero. Case PB terminated at 11.3
tube diameters from the inlet and case PC at 11.7 tube
diameters. A tube of this length, or any longer tube, will
produce complete condensation of the inlet steam
flow, with all of the condensate emerging from the
bottom of the tube.

Figure 4 shows by points the variation of (0/d,) with
respect to (4zN,)/6¢ for Cases PB and PC. These
points do not imply the increments that were used in
the calculations, but are only selected from the results.
The calculations, for Case PC for example, involved
139 increments in &. The Nusselt solution for a vertical
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plate is indicated here by dashed curves for the two
cases, as obtained from equation (17) of section 4,
using the value of N ,, indicated in Column 4 of Table
1. Again, as for the somewhat similar but more
accurate specification for Case AD on Fig. 3, thereisan
indication of the more rapid termination of the
condensation in the tube because of the reduction of
the vapor velocity that takes place in the tube.

Figure 5 contains a curve for Case PB to show the
variation of the liquid Reynolds number with height
and shows by a dashed curve the variation of the
Reynolds number associated with the flat plate case,
associated with the result from equation (17) as that is
shown on Fig. 4.

The applicability of these theoretical results, for
cases like PB and PC, and also Case AE, is in question
in any actual situation in respect to the possibility of
the downward drainage of the condensate from the
bottom of the tube without interference with the
incoming steam. In an apparatus that might be
contemplated to check experimentally those com-
puted results, a collection region for the condensate
would need to be of such form that the supply steam
could enter the tube without encountering the con-
densate stream. An annular trough for condensate
collection might achieve this.

9. SUMMARY

The Nusselt solution for condensation from the
upward vapor flow over the surface of a vertical plate
has been reviewed as an introduction to the case of
condensation from an upward vapor flow in a circular
tube. Some comments have been made about the
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possible directions of the condensate flow but a
definition of a specific condensate fiow regime does not
emerge from this consideration.

For condensation of steam in tube, computations
have been made for specific inlet conditions and
examples of these are used to indicate the success of the
computational procedure and to demonstrate cases of
upward and downward liquid flow. Some of these
cases are for a pressure of 900 psia, and are associated
with a tube size and inlet flow defined for an operating
condition of the TMI steam generating unit. They
show complete condensation in a very short height of
the tube, with condensate flow out of the bottom of the
tube. There remains, however, the question about the
ultimate course of this condensate, and whether it will
intermingle in part with the incoming steam.
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CONDENSATION EN FILM LAMINAIRE DANS UN TUBE AVEC ECOULEMENT
ASCENDANT DE VAPEUR

Résumé—La solution de Nusselt pour la condensation en film laminaire sur un plan vertical avec écoulement

ascendant de vapeur est reprise avec des commentaires sur la nature de 'écoulement de condensat. Le méme

probléme est considéré dans le cas de I'intérieur d’un tube vertical pour lequel la décroissance du débit de

vapeur du fait de la condensation produit une réduction du cisaillement qui conditionne la couche de

condensat. Une solution numérique du probléme est alors requise et des résultats sont donnés pour illustrer

la méthode de calcul et pour indiquer la nature du processus de condensation dans le tube vertical. Ces cas
concernent a la fois I'écoulement ascendant et descendant de condensat.

LAMINARE FILMKONDENSATION IN EINEM ROHR BEI AUFWARTSGERICHTETER
DAMPFSTROMUNG

Zusammenfassung—Die Nusselt'sche Losung fiir die laminare Filmkondensation an einer senkrechten
Platte mit aufwirtsgerichteter Dampfstrdmung wird mit Anmerkungen zur Art der Kondensatstrémung
behandelt. Das gleiche Problem der laminaren Filmkondensation wird fiir den Fall einer aufwirtsgerichteten
Dampfstromung in einem senkrechten Rohr betrachtet. Dabei fiihrt das Abnehmen des Dampfmassen-
stromes durch die Kondensation zu einer Verringerung der Schubspanning, die auf die auf die Kondensatschicht
einwirkt. Das Problem erfordert eine numerische Losung. Fiir einige Spezialfille werden Ergebnisse
mitgeteilt, um das Rechenverfahren zu erlidutern und die Natur des Kondensationsvorganges in einem
senkrechten Rohr zu veranschaulichen. Diese Fille umnfassen sowohl die nach oben als auch die nach unten
gerichtete Kondensatstromung,.
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JJAMUHAPHAS MJNEHOYHASA KOHAEHCALIUMA B TPYBE C BOCXOJAIMUM
[TOTOKOM ITAPA

Annoraims—PaccmaTpuBaercs pewenne HyccenbTa wisi TaMHHApHOH IUICHOYHOW KOHIEHCALMM Ha
BEPTHKAILHOM MJ1aCTHHE NPH BocxoasleM notoke napa. Ocoboe BHUMaHHe 0OpAllUEHO HA BbLIACHEHHE
NpPHPOdbl 10TOKa KOHAeHcaTa. Ta ke npobiaema 1aMHHApHOH NJICHOYHOW KOHICHCALMM paccMa-
TPHBAETCA [UIA Cly4yas BOCXOJALIEro MOTOKA Napa HA BHYTPEHHEH CTOPOHE BEPTHUKATbHOM TPyOsI,
KOTJla CHHXEHHE CKODOCTH pacxoja napa H3-3a KOHACHCALMH BbI3bIBAET W3MEHCHHE KacaTeTbHOro
HATIPSDKCHHUSA, YAEPXKHUBAIOLWIETO CJIOH KOHAEHCATa. BBHIMOJIHEHO YMCIEHHOE pELIEHHE 3aa¥M C UEJIBIO
WUIIOCTPAlMA METOOa pacyeTa H OOBACHEHHA NPUPOABI Mpolecca KOMIEHCAUMH B BEPTHKAJIbHOMN
TpyOe U npHBEAEHBI pe3ynbTaThl UIA HAaCTHbIX ciy4aeB. PaccMOTpeHbl kak Bocxoasiuee, Tak H
HHCXOALIEE TEHEHNS KOHOCHCATA.



