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Abstract-The Nusselt solution for laminar film condensation on a vertical plate with upward vapor flow is 
reviewed, with comments on the nature of the condensate flow. The same laminar fitm condensation problem 
is considered for the case of upward vapor flow in the inside of a vertical tube, in which case the decrease in the 
steam flow rate due to the condensation produces a reduction in the shear stress which supports the 
condensate layer. A numerical solution of the problem is then required and results are given for specific cases 
to illustrate the method of the calculation and to indicate the nature of the condensation process in the 

vertical tube. These cases involve both upward and downward Row of the condensate. 

friction coefficient, (2z,)/(pu2); 

tube inside diameter ; 
friction factor augmentation factor; 
gravitational acceleration ; 

(I + --Q$), equation (2); 

thermal conductivity; 
mass rate of flow ; 
mass flux ; 
dimensionless quantity, N 1, equation (6), N,, 

equation (3a); 
pressure ; 
temperature ; 
velocity in the z direction, I.? = u/(gv)1,3 ; 
distance normal to the wall, y = y/(v’/g)’ .‘3 ; 
distance along the plate or the tube normal 
from the bottom edge. 

Greek symbols 

K dynamic viscosity ; 
I’, kinematic viscosity ; 
r, shear ; 
6, liquid film thickness ; 
2, latent heat of vaporization ; 
r, liquid mass flow rate, per unit film width ; 
Pv density. 

Subscripts 

L, liquid; 
v, vapor ; 
6. edge of liquid film; 
c, condensation. 

Superscript 
_ 

dimensionless quantity in terms of (v2/g)‘13 
as a distance measure of (gv)’ p as a velocity 
measure. 

1. INTRODUCTION 

THIS report is a consideration of the problem of the 
condensation of a pure saturated vapor flowing up- 

ward in a vertical tube, for constant liquid and vapor 
properties, under conditions for which the liquid flow 
remains laminar. This problem is associated with that 
of Nusselt [l] who considered the problem of conden- 
sation on a plate of finite height with a vapor velocity 
past the plate surface; in this problem, depending on 
the plate height, the liquid can flow either upward or 
downward on the plate. The results of the Nusselt 
solution are given by Jakob [2] and by Kutateladze 
[3]. This solution is not applicable to the pipe situation 
because in the pipe the vapor velocity diminishes as the 
condensation proceeds. 

Rohsenow (4) has presented a method for the 
calculation of the condensation in a tube which 
assumes co-current annular flow of the vapor and of 
the liquid. On this basis the pressure drop is calculated 
from the correlation of Lockhart and Martinelli, so 
that the pressure gradient is found in terms of the local 
quality. For the heat transfer there is used a correlation 
specification of the heat transfer coefficient in terms of 
the two phase flow parameter, X,,; involving the 
quality and the properties. Then, by assuming incre- 
ments in the quality, the heat transfer out of the pipe 
wall in the increment is specified and, with the heat 
transfer coefficient determined, the length increment is 
evaluated. This solution then gives the quality and the 
pressure as function of the distance from the location 
at which condensation begins. 

The solution given here is more closely associated 
with the solution of Nusselt, in that a laminar liquid 
flow of the Nusselt type is specified. Thus, there is in the 
pipe an annular flow. This is specified in terms of a 
friction coefficient at the interface, the coefficient 
depending on the gas flow. In the vertical pipe, as in the 
Nusselt solution for the vertical plate, there is a 
restricted regime for totally upward condensate flow, 
though it appears that there is an undefined set of 
circumstances for which the condensate can flow both 
upward and downward. In this latter case the pos- 
tulates of the Rohsenow method based on co-current 
flow of the liquid and the vapor would probably be 
unsuitable. 
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In respect to the present problem, and for an temperature distribution in the laminar condensate 
orientation to it, some further discussion of the Nusselt layer is linear, and the condensation llux is specified by 

problem is included. the balance 

2. THE MOTION OF THE LIQUID 

The motion of the liquid is specified by neglecting 

the acceleration terms in the momentum equations, 
and assuming the liquid layer to be so thin relative to 
the radius of the pipe that the curvature of the layer can 

be neglected. Then for gravity in the downward 
direction 

d2u dP 

PL d2U 1 dP _ -.... 
PI.CI dr2 

I + {I;.4 ;; = G. 
I - ) 

(2) 

Integration yields for the velocity distribution in 0 < J 
< 6, where 6 is the layer thickness 

and from this velocity distribution the liquid Reynolds 

number is obtained as 

_,~~+v”, 
3 PL9 2 

(4) 

Non-dimensional variables are specified as 

With these variables the velocity distribution specified 

by equation (3) becomes 

and in particular, the liquid velocity at the edge of the 
condensate layer is 

(3b) 

The non-dimensional group that is the coefficient of 8 
in the last term is specified as N, ; it is a function of the 
shear. r& at the liquid-vapor interface. 

The Reynolds number, as given by equation (4) 
becomes, for G = I 

l- F2 83 
udy = - = N, -- - - 

2 3 PL 

(4a) 

A local mass balance specifies the change in the 
Reynolds number in terms of the condensation flux r$ 
(kgs-‘m-‘) 

If the convective terms in the energy equation are 
neglected, that is, if the contribution of liquid subcool- 
ing to the energy flux in the layer is ignored, then the 

(6) 

The liquid Reynolds number, I-/,u~, is a function of 8 

and the integration of equation (6) specifies 8 as a 
function of Z and gives the solution to the problem. 
Here (7, - T,) implicitly is a constant, but if this 
quantity is variable in Z there is no difficulty in the 

integration of equation (5). 

3. THE VAPOR FLOW AND THE FRICTION 
COEFFICIENT 

No detailed consideration is made of the velocity 

distribution in the vapor, but rather a friction coef- 
ficient is first evaluated as for fully developed pipe flow 
of the vapor and then this coefficient is modified 
according to the specifications of Henstock and Han- 

ratty [5], whereby there is specified an interfacial 
shear, in terms of a correlation of data for fully 
developed annular gas-liquid flow. This modification 
accounts for the increased friction that is due to the 
irregularity of the surface of the liquid layer. Fault may 
be found in this when it is applied to the region near the 
entrance of a pipe, where the friction coefficient varies 

substantially, but there is no similar specification for 

two phase annular flow and the method thus adopted 
underestimates the interfacial friction, r,), when the 
distance from the inlet, z/D, is small. 

The single phase friction coefficient is evaluated in 

terms of a vapor Reynolds number, Re,, as 

(‘r 8 

2 
~~ for Re, < 2000 

= Re, 
(7) 

and 

c f _ 0.04 
2 

- (Re-)o.25 for Re, > 4000 (8) 
Y 

with the interpolation 

(‘r (Rev)’ 33 
~~ = ~~ 
2 3050 

for 2000 -C Rr, < 4000. (9) 

The specification of equation (9) is not fundamental 
but is a device to eliminate the abrupt change in the 
friction coefficient that occurs at Re, = 2000 if a 
transition to equation (8) is used at that Reynolds 
number. With an abrupt change in wall shear difficul- 
ties were experienced in the numerical solution of the 
problem of condensation in a pipe. 

The Reynolds number of the vapor to be used in 

equation (7)-(9) should be, to be consistent with the 
specifications of ref. [5], [4 ni~(lcDp,)]. Instead, there 
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is used the Reynolds number 4 rit,/(nD’~~), where D’ = 

D - 26, the diameter of the gas flow region. Since 

generally 6 c D, as it must be if the assumptions of 
section 2 are to be sustained, there is little difference in 
the choice of the Reynolds number. Actually the choice 
that was made is probably more appropriate, since in 
some instances the increase in the friction coefficient as 
specified by ref. [5] was not used. 

For turbulent flow of the gas, ref. [5] specifies that 
the friction factor as given by equation (8) and (9) is to 
be multiplied by a quantity which will then produce 
the true friction factor (~r/2)~ 

Cf 0 YE 
= ;(l + 14OOF). (10) 

For the laminar liquid flow assumed here, the 
quantity F is 

F= 
21’2(lr/PLl)1’2 

Re' .9 
(VL/V”) WA)’ ‘z. (11) 

” 

For low vapor velocities, and particularly for down- 
ward liquid (countercurrent) flow, the factor F is to be 
modified further according to 

F=F[I-exp(s)]=F[l-exp(+)]. 

(12) 

No specification such as this is available for laminar 
flow in thevapor region, thus for Re, < 2000 the factor 
F is taken to be zero. 

The friction coefficient as given by equation (10) 
applies, however, only to the case of zero velocity 
normal to the interface. There is no specification for 
the friction coefficient for the case of the substantial 

normal velocity due to condensation. Because of this 
there is adopted for the specification of the shear the 
sum of the above friction shear based on no normal 
velocity at the interface and that due to condensation 

at the flux $’ (kgm-’ s- ‘). This is 

T6 = (Cf/& f’,U,’ + $(U, - ULs). (13) 

In considering this specification, note should be 
taken of the fact that, for the condensation problems 
considered, the liquid velocity at the interface, equa- 

tion (3b), is less than u, and it may be negative. Thus, 
equation (13) defines a ‘total’ friction coefficient that 
perhaps approximates the true value at least as I$’ -+ 0 
and as rig + x. One further modification was made in 
the shear stress, substituting for u,” in equation (13) the 
term (uv - uLJ2. Using the non-dimensional quan- 
tities there is then obtained 

N, = (~r/2)~ !J (u, - tiLa)2 + % (r7, - rz,,). (14) 
I’L 

This corresponds to equation (13) for Is, D I& and 
appears to be a plausible modification for use in the 
case in which tiL8 differs considerably from U,. 

With a friction coefficient specified, attention can 

now be given to the factor G = [l + (dP/dz)/(p,g)] 

that occurs in equations (l)-(4). If the body force on 

the vapor is neglected (p, CC pL) then a momentum 

balance on the vapor flow, in which the momentum 
rate is taken without a correction factor, as p,ut, yields 
for the pressure drop 

1 dP 4N, 

PLs dz -’ D . 
(15) 

Since rit, decreases with distance due to the conden- 
sation, the second term on the RHS of this equation 

tends to compensate the effect of the first term and the 
group [dP/dz)/p,g)] is often not much different from 
zero. The presently indicated results for the tube 

neglect this term, except in the one case noted specifi- 
cally in section 6. Thus, G = 1 in most cases though it is 

not too burdensome to include this term in the 
program whereby the evaluation of equation (6) is 
accomplished. 

4. THE NUSSELT SOLUTION 

Nusselt [l] indicated a solution for equation (6) for 
a constant value of N, and G = 1. The system 

approximating this solution can be considered as a 
vertical plate of infinite width and height. Vapor flows 
upward along the plate at constant pressure, and the 

friction coefficient is taken to be independent of length 

despite the fact that the development of a vapor 
boundary layer on the exterior of the condensate layer 
will produce a variation of the friction coefficient in the 
direction of vapor flow even if the second term of 
equation (13) is neglected. For this situation the liquid 
Reynolds number is, as given by equation (4a) 

or, 

l- $2 $3 

-=“‘2-5 PL 

and equation (6) becomes 

d& N, _=_ 
dz (N, - 8)F2 

or, 

(6a) 
This solution terminates when N, = 8, where 

d(I-/p,)/dF = 0. 
Figure 1 is a sketch of equation (4a) for various 

values of N,. Because of the form of equation (4b), the 
curve for N, = 1 also represents T/pLN3 = f(&/N,). 
For N, = 1 an expansion of the region for S/N, < 1.5 

is shown by an inset on Fig. 1. 
For a liquid layer beginning at the bottom of the 
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FIG. 1. Liquid Reynolds numbers as a function of non- 
dimensional film thickness for various values of N,. 

plate, integration of equation (6), for 6 = &, at the 

bottom of the plate, gives 

4 
3N2(J3 - &;) - (J4 - 8;) = 4 N, Z (16) 

4N,f 

N; 

If the condensate layer thickness is zero at the 
bottom of the plate, then upward flow of the conden- 
sate layer occurs up to the point at which the limit of 
8/N, = 1 is attained. There the Reynolds number of 
the liquid is given by r/(p,_Nz) = l/6, and the height at 
which this occurs is given by equation (16) as 
4(N,z)/N: = l/3. This specifies the maximum height 

of a plate for upward film flow when the layer thickness 
at the lower edge is zero. 

Completely positive Reynolds numbers can 
theoretically occur also if at the bottom of the plate the 
film thickness is such that 8/N, is between 1 and 3/2, so 
that the Reynolds number there is such as to make 0 < 
T/(p,Ni) < l/6. This requires a supply of liquid at the 
bottom of the plate, a situation considered to be 
unrealistic in the present context. With a zero Rey- 
nolds number, 8/N = 312, at the bottom, half of the 

flow in the layer is upward and half is downward and 
this situation might be considered as attainable if there 
exists an appropriate flow reversal device at the bottom 
of the plate. Then the Reynolds number increases with 

plate height, until there is attained the limiting value of 
T/(p,Nl) of l/6, when J/N, = 1. Equation (16) 
indicates that this height is given by 4(N,?)/N: = 0.9. 
This is the maximum plate height for film flow of the 
condensate when a zero Reynolds number is realized 
at the bottom by the special means of a flow reversal 
device at the bottom of the plate. 

If 8/N, > 312 the Reynolds numbers at the bottom 

of the plate are negative, and the net flow is downward. 
For X/N, = 2 the velocity in the layer is positive 

throughout it, with a zero velocity at the liquid vapor 
interface. For s/N, > 2 the velocity at the interface 

becomes increasingly more negative. If the Reynolds 
number is zero at the top of the plate. &,/Nz must be 

equal to 3i2 there, but, depending upon the plate 
height and the vapor flow conditions, there can be 
positive Reynolds numbers at the top ofthe plate, up to 
the limit that is specified by JiN, = 1. for which the 

Reynolds number is given by r/(pLNi) = l/6. To 
illustrate one specific case, the one with a Reynolds 
number of zero at the top, and all Reynolds numbers 

negative and with 8/N, and a Reynolds number given 

by r&N:) = - l/3 at the bottom, the height of the 
plate is specified by equation (16) as 4(N,z3/N: = 4.8. 

The prior specifications, made for quantity N, a 
constant, can be modified to partly account for the 
contribution of the condensation to the shear as that is 
contained in equation (14). This involves neglecting the 

interface velocity, U,,, in that equation and considering 

it as 

(17) 

The Reynolds number, in these terms is 

and equation (6a) can be written as 

d5 

Z- N~0~+~-6’lb 

with the solution, for 6 = 6,, at z = 0, the bottom of the 

plate 

4N,= 

= s4-- (19) 0 

and with S, = 0 at z = 0 the solution is 

4 
IN,62 + N,u,b - J4 = 4N,z. (20) 

This is cited here because of later use. It cannot be 

considered in a general way because 4N,? now 
depends on both N,, and on N,u,, so that the 
appraisal of the flow direction as made before for N, 
a constant is not possible in a concise way. 

5. UPWARD VAPOR FLOW IN A TUBE 

With the assumption of 5 << 0, so that the curvature 
of the liquid layer can be neglected as it was in section 
2, the development of the liquid layer is specified by 
equation (6) 

W//d N, -=_ 
dl 6 
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In considering this equation, there can be considered means other than exclusively film-wise, but in any case 
the form all of the liquid must leave at the bottom of the tube. 

where 

d(I-/M dF N, ____- 
d& dr = h’ 

(6a) 

If the condition 8/N, = 2 is adopted for the bottom 
of the tube with complete condensation, then for 
this value of S/N, the liquid Reynolds number is 
(- 2 N S/3). A choice of a vapor Reynolds number, 
for a given tube diameter and given properties, specifies 
N, and thus the liquid Reynolds number. But the mass 
flow of liquid so specified by the liquid Reynolds 
number must equal the mass flow of vapor associated 
with the chosen gas Reynolds number, as from equa- 
lion (21) 

It is apparent from equation (6a) that when d(r/p,)/db 
= 0 this solution terminates with d&Id= --f X. 

Quantity N, is now that given by equation (14), with 
(~~12)~ evaluated as specified by equation (IO). If 6 is 
taken to be zero initially, 8 increases with Z, the liquid 
Reynolds number is positive, and N, decreases with f 
because of the decrease in the vapor velocity. Thus, in 
terms of the picture of Fig. 1, the curve of the relation 
r/pL = f(6) originates at zero, passes through the 
curves for successively lower values of N,, and ter- 
minates when d(T/p,)/d& = 0. 

If & is taken to be greater than the initialvalue of N, 
then 6decreases as .? increases. Quantity N, decreases 
as Z increases because of the decrease in the vapor 
velocity, and the relation r/p,_ = f(6) passes through 
the curves associated with successively lower values of 
N,. It terminates at d(r/p,)/dd = 0. 

This kind of behavior is shown on Fig. 1 by a dashed 
line, which is the last part of the solution for a specific 
case, case PC of section 7, which begins with a negative 
Reynolds number that is below the lower limit of the 
scale of Fig. 1. The successively lower values of N,, due 
to the decreasing friction because of the decreasing 
value flow, are apparent. The termination, at 
d(r!pJdb = 0 cannot be discerned because of the 
scale of Fig. 1. 

The above behavior is subject to the availability of 
sufficient vapor. The mass balance between the vapor 
and the liquid flows is 

. ““0 - ti, = d(r - r,) 
or, in terms of Reynolds numbers 

4&, 4ti, _,4iE!Z E_5. 
&I F> 72) PY i i !A PL PL 

When ni, = 0 the solution terminates; this may occur 
before d(r/p,)/db becomes equal to zero. 

A limit on the inlet gas Reynolds number for a given 
tube size and fluid properties can be established for the 
case of complete condensation, as would occur in an 
infinitely long tube. Regardless of the nature of such 
condensation, all of the liquid must then leave the 
bottom of the tube. If that condensation is completely 
film-wise, this requires that all of the liquid Reynolds 
numbers along the tube height be negative, terminat- 
ing with S/N = 3/2 and d(r/~)~d~ = 0 simultaneously 
at the point where all of the vapor is condensed, so that 
also, N, would be zero at that point. This has not been 
proven and this condition may not always exist. If it 
does not, the condensation must be completed by 

A trial and error solution made in an approximate 
way by neglecting the second term in equation (14), 
establishes the gas Reynolds number that meets these 
conditions. It is the maximum gas Reynolds number 
for complete condensation. Lower inlet gas Reynolds 
numbers than this one will produce lower values of N, 
at the tube inlet, and liquid films leaving the tube with 
larger values of 8/N,. This maximum Reynolds num- 
ber is cited in some of the evaluations that follow. 

6. THE CALCULATIOI\;ANDRESULTS 

Given the initial value of dand the initial vapor flow. 
which specifies the initial value of [4 m,,/(~@,)], the 
solution of equation (6) gives 8as a function oft This 
solution is made in the following way : 

(1) The initial value of &, together with the initial 
value of m,,, enables the calculation of an initial value 
of N, from equation (14) and the associated definitions 
of the friction factor. 

(2) A suitably small increment in 6 is selected, to 
define the next value of S, which is 8,. 

(3) This defines an approximate I-i/t, by the use of 
the initial value of N,. The mass balance gives a value 
of the gas Reynolds number, [4 m,/(nD~,)] and then a 
new value of N, is calculated. Linear interpolation is 
used to find, from the initial and the new values of N 21 a 
more suitable value of N,, which is then used to find 
another value of r!ptL and the process is repeated until 
the values of r//r,. are within 0.3% of each other. The 
liquid Reynolds number is then taken as the value 
given at the end of this iteration. 

(4) The increment in 5 is calculated from 

(5) With (I?/,u& 5, N, now specified, another incre- 
ment is taken in 8, as in step 2, and the process is 
repeated. The calculation is carried out either to the 
point at which d(r~~L)~d~ = 0 or to the point at which 
all of the vapor has been condensed. 

If &, = 0, gravity is neglected for the first step, so that 
the z3 term does not appear in the denominator of 
equation (6a) and then, with N, taken from equation 
(14), with F taken to be zero in equation (lo), equation 
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(6a) can be integrated analytically. Thus, ci is de- 
termined as a function of -_. A very small value of ,i is 

chosen. Then a new value of ‘Vz is calculated and thcsr 
values serve for the entrance to step 2. as above. 

Calculations were carried out in this way for two 

different situations as defined at the top ofTable I. One 
was for water at atmospheric pressure. with properties 
of both liquid and vapor evaluated for saturation 

conditions. The temperature difference between the 
vapor and the wall was taken as 55°C. Since the liquid 
temperature is therefore lower than the saturation 
temperature, the liquid property evaluation is incon- 

sistent, but the situation is tolerable since the results 
are merely an example. As noted before, if the liquid 

properties are considered to be invariable with tem- 
perature, then the distances predicted for the chosen 
temperature difference apply for any other tempera- 
ture difference if the distance is taken to be inversely 
proportional to the temperature difference. All of 

the cases for atmospheric pressure are designated by 
letter A. 

The second set of cases, designated by letter P, 
involve water at a pressure of 900psia. with a tube 
diameter of 1.97 cm, slightly greater than that used in 

the A cases. In the P cases the vapor properties were 
taken at saturation conditions and the liquid proper- 
ties at a film temperature corresponding to the chosen 
difference of 39 ‘C between the vapor and the wall 
temperature. The P cases are related to a specification 

of conditions at entrance to the steam generator of the 
TMI system at a particular time in the TMI event. This 

is the reason for the choice of the conditions for the P 
cases. 

The entries of Table 1 define the cases by two letters, 
the first as indicated above and the second which 
merely defines the particular cases and has no other 

significance. The initial conditions as assumed for a 
particular case are specified in Columns I and 2 of the 
table. The assumed value of (y(,, Column 1. is zero for 
some cases and finite for others. The assumed initial 
value of the vapor Reynolds number based on tube 
diameter, Column 2, reflects as assumption ofan initial 
steam rate, ni,, kg s- ‘. These two assumptions, to- 
gether with a definition of the friction coefficient. specify 
the initial value of N, via equation (14). as given in 

Column 6. This specification of the friction coefficient 
involves the quantity, F. equation (10). As noted in that 
connection F was taken to be zero if the vapor 

Reynolds number was less than 2000. For a number of 
cases the vapor Reynolds number is less than this 
initially, and this fact is noted by a zero value for F in 
Column 13. In one other case, PB, it was arbitrarily 
taken to be zero and this is noted in Column 13. For 
cases AA, PA and PC, Column 13 shows the initial and 
final values of the quantity 14OOF. 

With (T, and N, specified, the liquid Reynolds 
number is specified as in Column 3; negative values 
indicate that I-, the liquid flow rate per unit width, is 
negative. Columns 4 and 5 are not fundamental, and 
are associated with certain approximate predictions 



Laminar film condensation in a tube with upward vapor flow 1297 

made for the Nusselt solution of Section 4, done to 
provide some orientation for the basic results. Entries 
appear only for the cases in which such a presentation 
is made. Column 4 gives N,,, thevalue associated with 
equation (19) calculated from the vapor flow condition 
assummg that uL6 is zero. Column 5 gives N,ti,, 
associated with the contribution of the condensation 
to the shear stress, neglecting the effect thereon of UL. 

The remaining columns of the Table refer to the 
final conditions of the calculation. All terminated for 
d(r/p,)/dd = 0, though for some of them this termi- 
nation was very close to the other termination point 
that would have been executed upon complete conden- 
sation of the available steam. Column 7 gives the final 
value of 5, Column 8 the final vapor Reynolds number, 
Column 9 the final value of the liquid Reynolds 
number, and Column 10 the final value of Z Column 11 
gives z/D, the number of tube diameters from the inlet 
at which the final Z occurs. Column 12 gives the 
percentage of the inlet steam flow that is condensed. 

The values of 6 and of r/pL that were calculated 
between the initial and final points are presented as 
functions of Z on figures. 

7. RESULTS FOR STEAM CONDENSATION AT 

ATMOSPHERIC PRESSURE 

For atmospheric conditions, it was noted previously 
that an approximation could be made for the inlet 
vapor Reynolds number that would result in complete 
condensation, with all of the condensate running out of 
the bottom of the tube. For the conditions of the A 
cases this Reynolds number is 4200. Table 1 indicates 
case AA for an initial vapor Reynolds number of 
25 600, so much higher than 4200 that an initial liquid 
layer thickness of zero is the only reasonable assump- 
tion. This calculation terminates with d(r/p,)/dd = 0 
at Z = 9340 (z/D = 15.4), with 81.6% of the vapor 
condensed and a positive liquid Reynolds number of 
256. If the tube is only 15.4 diameters long for the 55°C 
temperature difference or in inverse proportion to the 
temperature difference for other temperature differ- 
ences, this is the outlet condition at the top of the tube. 
If the tube is longer than this, the condensation will 
continue, but with a different flow regime than the 
annular flow that is assumed in the model. Even at 
termination S/D is only 10.6/620; thus the liquid 
volume fraction is relatively small. One hypothesis, not 
yet examined, would be a continuation of the annular 
flow at the limiting value of 6 with entrainment of the 
excess condensation in the vapor stream. 

Figure 2 indicates the variation of 5 with Z for this 
case in terms of 6 as a function of 4 N 1 Z. AS a point of 
reference, the Nusselt solution as given by equation 
(20) is shown as a dashed line for the initial values of 
N,, and N 1~V as they are given in Table 1. The more 
rapid attainment of the terminal condition in the pipe 
flow case, due to the decrease in the vapor velocity, is 
evident clearly. Figure 2, on another curve, shows the 
variation of the liquid Reynolds number, r/pL, for the 
solution for the pipe. There is shown no comparison of 

100 

IO 

1.0 

01 
IO IO3 IO4 IO5 

4 N,f 

FIG. 2. The variation of Sand Liquid Reynolds number along 
the height of a vertical tube. Cases AA, AB, and PA are 
indicated, with ordinate and abscissa scales as specified for 
them. The solid curve for Fis the computed result ; the dashed 
curve is an approximation for the condensation on a vertical 
plate with constant vapor velocity at the initial value thereof. 

Curves R are the liquid Reynolds number, r/pL. 

this to the Reynolds number associated with the 
Nusselt solution. 

A case like that of Case AA was calculated, including 
the value of G that is defined by equations (3) and (15). 
The effect on zfor the termination point, of d(r/p)/d6= 
0, was very small. This does not support, of course, the 
use of G = 1 in all of the cases given in Table 1, and in 
the future the value of G should probably be included 
at the expense of additional complication in the part 3 
of the calculation as outlined before. 

Another Case, AB, is presented for an initial vapor 
Reynolds number of 1890. This is far less than 4200 
and downward liquid flow is indicated. Nevertheless, if 
&is taken to be zero at the inlet, the terminal condition 
is indicated to be at ? = 70.7, z/D = 0.13, with 31% of 
the vapor condensed. If the tube was indeed only 0.13 
diameters high, this situation could in principle be 
attained. Figure 2 shows 8 as a function of 4YN I with 
different scales being used because of the small values 
that are involved in this case. A dashed line shows the 
solution from equation (20). Despite the very short 
length there is considerable condensation and the 
value of 8 departs considerably from this Nusselt 
solution even in the short distance that is involved. 

For this initial Reynolds number of 1890, three cases 
are shown for arbitrary but different values of Jo, Cases 
AC, AD, and AE, involving successively lower values of 
the negative liquid Reynolds number at the tube inlet, 
and for these cases the condensation ranges from 70 to 
98% and for the latter only 2.42 tube diameters of 
height are required. The 4% is so close to the 100% 
level that any tube of length greater than about 2.5 
diameters will condense all of the stem input that was 
specified for these cases. Figure 3 shows by points the 
relation of F to Y, given there as (6/&J as a function of 
(4(N lz3/&). There is little distinction between the 
results except for the termination point, indicated by 
the last, underlined, symbol for each case. For a 
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FIG. 3. The variation of &with height, Cases AC, AD, and AE. 
The points are derived from the computed results. The curve 

approximates the flat plate result for Case AD. 

comparison, equation (19), the Nusselt solution for the 

condition of Case AD, is shown by a curve on the 
figure. The variation of the Reynolds number with 

height is shown on Fig. 5 by curves for Cases AD and 
AE, and the prediction for Case AD of the Reynolds 
number as given by equation (18) is shown by a dashed 
curve on the figure. This figure also contains the curve, 

0, representing the Nusselt solution for a vertical plate 
for the case of stationary vapor. 

8. RESULTS FOR STEAM CONDENSATION AT 900 psia 

As noted in section 5, complete condensation, 

provided that the tube was high enough, with down- 
ward flow of the condensate, would be expected for gas 
Reynolds numbers up to about 50 000 for the 1.29 cm 
diameter tube under consideration for the high press- 

ure condition, for which the P cases defined in 
Table 1 were calculated. All of those are for an initial 

vapor Reynolds number of 7865, chosen for the specific 
problem of the TM1 stream generating unit. Thus 

downward condensate flow is expected and Cases PB 
and PC deal with such a situation. As a matter of 
interest, however, a calculation, Case PA, was made for 

this initial vapor Reynolds number and an initial liquid 
layer thickness of zero, so that the liquid flows upward 
in the tube. 

I ’ I 
I n PR I 

FIG. 4. The variation of &with height, Cases PB and PC. The 
points are derived from the computed results. The curves are 
approximation for the vertical plate case, qualified as in 

section 7. 
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FIG. 5. The variation of liquid Reynolds number with height, 
The solid curves show the computed results for Cases AD, 
AE, and PB. All Reynolds numbers are negative except for the 
terminal values for Case AD, barely discernible as an almost 
vertical line near the ordinate of 0.3. These final Reynolds 
numbers are positive. The dashed curves for Cases AD and 
PB are the Reynolds numbers for the plate predictions that 

are shown on Figs. 3 and 4. 

For Case PA, Table 1 shows a termination, with 

d(I/p,)/d8 = 0, at 2 = 3.5, corresponding to a distance 
of only 2 x 10d3 diameters from the inlet. Only 0.3”; 

of the stream flow is condensed before the liquid layer 

becomes thick enough so that the upward condensate 
flow can no longer be maintained. The dependence of 

6on Yis shown on Fig. 2 by a solid curve. The dashed, 

comparison curve from equation (20) is very close to 
the computed solution because very little of the vapor 
is condensed. A solid curve, R, on Fig. 2 shows the 
variation of the Reynolds number. 

Table 1 indicates two cases. PB and PC, for different 

but similar values of &,. In case PB, the factor for 
friction augmentation, F, was arbitrarily taken to be 

equal to zero, while it was used as specified in section 3 
for Case PC. It is the difference in N, associated with 

this choice that causes the initial Reynolds number for 
the liquid to be the same for these two cases. The final 
values that are indicated in Table 1 show that for the 
chosen initial conditions the effect of the factor F is not 
very important. Both of these cases show essentially 
completecondensation, though the termination was at 
d(I/Q’d& = 0. (Case PC is the one for which the 
latter part of the relationship between K,LL,, and c‘i is 
shown by a dashed line on Fig. 1.) The liquid Reynolds 
number at the termination was positive but only very 
slightly greater than zero. Case PB terminated at I I.3 
tube diameters from the inlet and case PC at 11.7 tube 
diameters. A tube ofthis length, or any longer tube, will 
produce complete condensation of the inlet steam 
flow, with all of the condensate emerging from the 
bottom of the tube. 

Figure 4 shows by points thevariation of (6/b;,) with 

respect to (4W,)/Ji for Cases PB and PC. These 
points do not imply the increments that were used in 
the calculations, but are only selected from the results. 
The calculations, for Case PC for example, involved 
139 increments in 5. The Nusselt solution for a vertical 
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plate is indicated here by dashed curves for the two 
cases, as obtained from equation (17) of section 4, 
using the value of N,, indicated in Column 4 of Table 
1. Again, as for the somewhat similar but more 
accurate specification for Case AD on Fig. 3, there is an 
indication of the more rapid termination of the 
condensation in the tube because of the reduction of 
the vapor velocity that takes place in the tube. 

Figure 5 contains a curve for Case PB to show the 
variation of the liquid Reynolds number with height 
and shows by a dashed curve the variation of the 
Reynolds number associated with the flat plate case, 
associated with the result from equation (17) as that is 
shown on Fig. 4. 

The applicability of these theoretical results, for 
cases like PB and PC, and also Case AE, is in question 
in any actual situation in respect to the possibility of 
the downward drainage of the condensate from the 
bottom of the tube without interference with the 
incoming steam. In an apparatus that might be 
contemplated to check experimentally those com- 
puted results, a collection region for the condensate 
would need to be of such form that the supply steam 
could enter the tube without encountering the con- 
densate stream. An annular trough for condensate 
collection might achieve this. 

9. SUMMARY 

The Nusselt solution for condensation from the 
upward vapor flow over the surface of a vertical plate 
has been reviewed as an introduction to the case of 
condensation from an upward vapor flow in a circular 
tube. Some comments have been made about the 

possible directions of the condensate flow but a 
definition of a specific condensate flow regime does not 
emerge from this consideration. 

For condensation of steam in tube, computations 
have been made for specific inlet conditions and 
examples of these are used to indicate the success of the 
computational procedure and to demonstrate cases of 
upward and downward liquid flow. Some of these 
cases are for a pressure of 900 psia, and are associated 
with a tube size and inlet flow defined for an operating 
condition of the TM1 steam generating unit. They 
show complete condensation in a very short height of 
the tube, with condensate flow out of the bottom of the 
tube. There remains, however, the question about the 
ultimate course of this condensate, and whether it will 
intermingle in part with the incoming steam. 
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CONDENSATION EN FILM LAMINAIRE DANS UN TUBE AVEC ECOULEMENT 
ASCENDANT DE VAPEUR 

R&m&La solution de Nusselt pour la condensation en film laminaire sur un plan vertical avec dcoulement 
ascendant de vapeur est reprise avec des commentaires sur la nature de 1’6coulement de condensat. Le m&me 
problkme est consid& dans le cas de I’intirieur d’un tube vertical pour lequel la d6croissance du dCbit de 
vapeur du fait de la condensation produit une rCduction du cisaillement qui conditionne la couche de 
condensat. Une solution numerique du problBme est alors requise et des rlsultats sont don&s pour illustrer 
la mCthode de calcul et pour indiquer la nature du processus dk condensation dans le tube vertical. Ces cas 

concement i la fois l’boulement ascendant et descendant de condensat. 

LAMINARE FILMKONDENSATION IN EINEM ROHR BEI AUFWARTSGERICHTETER 
DAMPFSTROMUNG 

Zusammenfassung-Die Nusselt’sche LGsung fiir die laminare Filmkondensation an einer senkrechten 
Platte mit aufwlrtsgerichteter DampfstrGmung wird mit Anmerkungen zur Art der Kondensatstriimung 
behandelt. Das gleiche Problem der laminaren Filmkondensation wird fiir den Fall einer aufwgrtsgerichteten 
DampfstrGmung in einem senkrechten Rohr betrachtet. Dabei fiihrt das Abnehmen des Dampfmassen- 
stromes durch die Kondensation zu einer Verringemng der Schubspanning, die auf die auf die Kondensatschicht 
einwirkt. Das Problem erfordert eine numerische LGsung. Fiir einige Spezialfille werden Ergebnisse 
mitgeteilt, urn das Rechenverfahren zu erllutem und die Natur des Kondensationsvorganges in einem 
senkrechten Rohr zuveranschaulichen. Diese Fille umnfassen sowohl die nach oben als such die nach unten 

gerichtete KondensatstrSmung. 
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JIAMWHAPHAIl WlEHOqHAR KOHflEHCAqMR B TPYGE C BOCXOARll(MM 
I’IOTOKOM nAPA 

.klHOT8lWlR-PaCCMaTpHBaCTCI pelIleHHC HyCCeJlbTa AJISl JfaMHHapHOii nJleHO'lHOi? KOHneHCauAN Ha 

BepTuKanbHofi nnacTkiHenpe BocxomueM noToxe napa. Oco6oe BmhfaHAe 06paueso Ha BblflcHeHiie 

npupoabl nOTOKa KOHneHCaTa. Ta x(e npo6neMa AaWiHapHO8 nneHoYHoii KOHneHCawiH paccMa- 

TprtBaeTCN &W! CJIy',aK BOCXOLWUeI-0 nOTOKa napa Ha BHyTpeHHeti CTOpOHC BepTHKaJIbHOi? Tpy6bI. 

KOrL,a CHHTeHkle CKOpOCTH paCXOL,a napa A3-3a KOHAeHCaUHH BbISbIBaeT ASMeHCHHC KaCaTeJTbHOrO 

HanprmeHm, ynepmisaio4ero cnol KoHneHcaTa. BbInOnHeHO wcneHHoe petuemie 3anarli C uenbm 

",IJUO‘TpaL,k,A MeTO& paWeTa A o6ancHeHm npApOnb1 npOUeCCa KOHLIeHCaUllN B BepTHKaJIbHOfi 

Tpy6e 54 npEfBeLleHb1 pC3yJlbTaTbI .iUlll WCTHbIX CJIyWCB. PaCCMOTpeHbl KaK BOCXO~~IUCC. TaK H 

Hwxonmqee TeveHm KoHneHcaTa. 


